Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat.

نویسندگان

  • Pierre Martre
  • John R Porter
  • Peter D Jamieson
  • Eugène Triboï
چکیده

A functional explanation for the regulation of grain nitrogen (N) accumulation in cereal by environmental and genetic factors remains elusive. Here, new mechanistic hypotheses of grain N accumulation are proposed and tested for wheat (Triticum aestivum). First, we tested experimentally the hypothesis that grain N accumulation is mostly source regulated. Four contrasting cultivars, in terms of their grain N concentrations and yield potentials, were grown with non-limiting N supply. Grain number per ear was reduced by removing the top part of the ear at anthesis. Reduction in grain number gave a significant increase in N content per grain for all cultivars, showing that grain N accumulation was source regulated. However, on a per ear basis, cultivars with a high grain number fully compensated their N accumulation for reduced grain number at anthesis. Cultivars with a lower grain number did not compensate completely, and grain N per ear was decreased by 16%. Second, new mechanistic hypotheses of the origins of grain N source regulation and its response to environment were tested by simulation. The hypotheses were: (a). The regulation by N sources of grain N accumulation applies only for the storage proteins (i.e. gliadin and glutenin fractions); (b). accumulation of structural and metabolic proteins (i.e. albumin-globulin and amphiphilic fractions) is sink-regulated; and (c). N partitioning between gliadins and glutenins is constant during grain development and unmodified by growing conditions. Comparison of experimental and simulation results of the accumulation of grain protein fractions under wide ranges of N fertilization, temperatures, and irrigation supported these hypotheses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر میزان و زمان مصرف کود نیتروژن بر تجمع و کارایی انتقال مجدد نیتروژن در برگ پرچم دو رقم گندم

Understanding the nitrogen remobilization by plant, in order to obtain cultivars with higher quality, has specific importance in plant physiology. In this experiment, a bread and a durum wheat cultivar, were treated with different rates and times of nitrogen application, by using split factorial on the basis of randomized complete block design with three replications at Shiraz region during 200...

متن کامل

Use of the Stable Nitrogen Isotope to Reveal the Source-Sink Regulation of Nitrogen Uptake and Remobilization during Grain Filling Phase in Maize

Although the remobilization of vegetative nitrogen (N) and post-silking N both contribute to grain N in maize (Zea mays L.), their regulation by grain sink strength is poorly understood. Here we use 15N labeling to analyze the dynamic behaviors of both pre- and post-silking N in relation to source and sink manipulation in maize plants. The results showed that the remobilization of pre-silking N...

متن کامل

اثر میزان و زمان مصرف کود نیتروژن بر تجمع و کارایی انتقال مجدد نیتروژن در برگ پرچم دو رقم گندم

Understanding the nitrogen remobilization by plant, in order to obtain cultivars with higher quality, has specific importance in plant physiology. In this experiment, a bread and a durum wheat cultivar, were treated with different rates and times of nitrogen application, by using split factorial on the basis of randomized complete block design with three replications at Shiraz region during 200...

متن کامل

Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain.

The NAM-B1 gene is a NAC transcription factor that affects grain nutrient concentrations in wheat (Triticum aestivum). An RNAi line with reduced expression of NAM genes has lower grain protein, iron (Fe), and zinc (Zn) concentrations. To determine whether decreased remobilization, lower plant uptake, or decreased partitioning to grain are responsible for this phenotype, mineral dynamics were qu...

متن کامل

Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves.

Nitrogen uptake and metabolism are central for vegetative and reproductive plant growth. This is reflected by the fact that nitrogen can be remobilized and reused within a plant, and this process is crucial for yield in most annual crops. A population of 146 recombinant inbred barley lines (F(8) and F(9) plants, grown in 2000 and 2001), derived from a cross between two varieties differing marke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2003